NASA-CR-200246 o | N CCW=-0040

NASA/WVU Software IV & V Facility o SRS T e
Software Research Laboratory
Technical Report Series

~ Annual Report =

NASA/WVU Software Research Laboratory

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement ¥NCCW-0040,
the following approval is granted for distribution of this technical
report outside the NASA/WVU Software Research Laboratory

/Afé"—//ao/%

Date /%7 John R. Callahan 'Date
A3 r, Software Engineering WVU Principal Investigator

Annual Report

NASA/WVU Software Research Laboratory

1995

Contents

1 Introduction

1.1
1.2
1.3
1.4

1.5

OVerVIEW o e e e e
Background oL
Objectives e
Approach
1.4.1 Software Processes

1.4.2 Metrics e

1.4.3 Formal Methods '

1.44 Software Tools
Acknowledgmentso

2 People

3 Support Activities

3.1
3.2
3.3
34

NASA/WVU Technical Lecture Series
V&V Research Quarterly
Technical Report Series, .
World-Wide-Web Pages

4 Process

4.1
4.2
4.3
4.4
4.5

IV&V within Rapid Software Development
IV&V Within Reuse-Based Software Engineering
V&V Tools Under Development
The Emerging Paradigm
IV&V Effectiveness

5 Metrics

5.1
5.2
5.3

Defining Metrics for the ROSE Project
Misrepresentation of Software Project Statistics
Managing Software Projects Using the WWW
53.1 AnOverview of WISE
5.3.2 A Brief Description of WISE

10

12
12
13
13
13

14
14
15
16
17
18

5.3.3 Current Statusof WISE 27

6 Testing 29
6.1 Validation Testing - An Automated Approach 29
6.1.1 Definitions L 30

6.1.2 Recommendation, 30

6.1.3 Implementation 31

6.2 Requirements-based Testing and Analysis 31
6.3 The SRL Testing Toolkit 33

7 Classification 35
7.1 Verification and Validationof RMP 35
7.2 Status Updatefor RMP 37

Chapter 1

Introduction

In our second year, the NASA/WVU Software Research Lab has made signif-
icant strides toward analysis and solution of major software problems related
to V&V activities. We have established working relationships with many on-
going efforts within NASA and continue to provide valuable input into policy
and decision-making processes. Through our publications, technical reports,
lecture series, newsletters, and resources on the World-Wide-Web, we provide
information to many NASA and external parties daily.

This report is a summary and overview of some of our activities for the past
year. This report is divided into 6 chapters: Introduction, People, Support Ac-
tivities, Process, Metrics, and Testing. The Introduction chapter (this chapter)
gives an overview of our project beginnings and targets. The People chapter
focuses on new people who have joined the Lab this year. The Support chapter
briefly lists activities like our WWW pages, Technical Report Series, Technical
Lecture Series, and Research Quarterly newsletter. Finally, the remaining four
chapters discuss the major research areas that we have made significant progress
towards producing meaningful task reports. These chapters can be regarded as
portions of drafts of our task reports.

1.1 Overview

This Annual Report outlines specific research work on projects in four major
areas of IV&V: Process, Metrics, Testing, and Classification. The following ta-
ble shows a breakdown of these topic areas, subtopics, and outreach research
projects that are exploring aspects of each subtopic. Many of the related project
overlap into several topis and subtopics, but this is to be expected since it is diffi-
cult to separate the complex dimensions of software projects. Applied research
into each of these areas is needed to support findings and recommendations
that will form the Task Reports in each of these areas. Our pro-active approach

has helped advocate the benefits of IV&V and demonstrate its effectiveness to
NASA through our outreach efforts.

Topic Area Subtopic Related Project(s) | Page |
Process IV&V and Rapid Software | Rapid Development Lab 14
Development Methods at Johnson Space Center (JSC)
IV&V and Software Reuse | Reusable Objects 15
Software Environment Project
at Johnson Space Center (ISC)
IV&V Tools EOSDIS IV&YV effort 16
by Intermetrics, Inc.
IV&V Process Paradigms summary of other 17
process efforts
IV&V Cost Effectiveness EOSDIS, International 18
Space Station (ISS)
Metrics Defining Metrics ROSE at JSC 21
for the ROSE Project
Misrepresentation of summary of other 22
Software Project Statistics | metrics efforts
Managing Software ROSE, EOSDIS, ISS 25
Projects on the WWW
Testing Validation Testing EOSDIS 29
Requirements-based ISS 31
Testing and Analysis
The SRL test toolkit EOSDIS, 1SS, and 33
the Cassini project at
the Jet propulsion Lab (JPL)
Classification | V&V of the Reliable EOSDIS, ISS, 35
Multicast Protocol Information Sharing Protocol (ISP)
at Johnson Space Center (JSC), and
Cassini

Sections of each chapter in this report discusses the specifics of each project,
topic, and the details of the outreach efforts involved. Further information
can also be found va our Home Page on the World-Wide-Web (WWW) at
http://research.ivv.nasa.gov/.

1.2 Background

Space is the most difficult environment for humans and machines to operate
in. The vacuum of space is subject to enormous temperature changes, and our
ability to fix spacecraft in orbit is extremely limited. With each new mission,
NASA confronts increasing levels of system sophistication and complexity. In
order to control and operate these new systems, a greater dependency is being
placed on software. To meet the increased system demands, system software, in
turn, is experiencing a dramatic increase in size and overall complexity. NASA
recognizes that defects embedded within increasingly sophisticated and prolific
system software represent a threat to future missions and has decided to take
steps to minimize this risk.

In October 1991, the United States Congress passed Public Law 102-139
establishing a NASA Software IV&V Facility in Fairmont, West Virginia (here-
after referred to as ”the Facility”). The primary mission of the Facility is to
advance the state-of-the-art in the area of software Verification and Valida-
tion (V&V) tools, techniques and methodologies, and to advance and promote
the Software Assurance discipline in general. To this end, the Facility is in-
volved with Technology Transfer through the development of a comprehensive

The primary mission of the Software V&V Facility’s Research arm is to
address the fundamental problems associated with preventing or reducing the
number of defects in software products. Since ”100% error free” software re-
mains an unreasonable goal at this time, it is our mussion to reduce the level
of risk involved to some quantifiable level. In order to accomplish this, the re-
search organization will identify, investigate and develop new software-oriented
tools, techniques, and methodologies useful to both the Government and the
commercial sector. The basis for identifying these new pursuits will stem from
close ties formed between the NASA Facility, the academic world, and private

industry. These strategic alliances will help to insure that new technological

1.3 Objectives

The primary objectives of the research effort are to- (1) advance the state-of-
the-art in the area of software Verification and Validation (V&V), including
research, policy development, tools, techniques and methodologies; (2) promote

closely with the Technology Transfer Office in order to support their develop-
ment of a world class training program; (3) ensure the industry relevance of
research topics through consistent and active participation in selected interna-
tionally and nationally recognized software forums; (4) promote a true spirit of
national competitiveness by soliciting candidate research topics through NASA
Research Announcements (NRAs); (5) strive to eliminate duplication of effort
through our strategic alliance with industry, academia, other government agen-
cies and other NASA Centers by acting as a focal point for sirmilar pursuits; and
(6) to become a nationally and internationally recognized Center of Excellence
for software research within NASA.

1.4 Approach

Although there exists a significant body of research in verification and validation
of computer software, many problems still remain unresolved. Much of the
existing research, however, indicates the need for improved specification and
analysis of software requirements and design. For example, it is recognized
widely that more emphasis must be placed on activities in the early phases
of the software development life-cycle (i.e., requirements and design) because
over 75% of software faults are committed in these phases. Yet, relatively little
research has been done to solve this problem because traditional early life-cycle
phases have been informally defined and practiced. This is an example of an
area where future research in verification and validation can have an important
impact.

Since development and V&V are complementary efforts, changes in one pro-
cess inevitably affect the other. We expect that advances in V&V research will
significantly influence development techniques and vice-versa. For example, de-
velopment of a specification technique that proves effective in verifying timing
constraints in real-time software will cause it to be used in future development
efforts. Therefore, V&V research should not be limited to techniques applicable
to current development methodologies, but rather they should significantly ad-
vance the state-of-the-art of V&V pro-actively relative to software development.
The following are considered to be prime candidate focal areas of concentration
to be factored into the formation of an overall general strategy for research to
be performed at the Facility by West Virginia University as well as others to
come.

1.4.1 Software Processes

IV&V plays an important role in software development by providing mechanisms
for: (1) independent customer feedback, and (2) feedback into the development
process. Although IV&V may add 15 to 45% to the cost of a software project, it
may recoup these costs by delivering high-quality and avoiding costly problems
after delivery and during the later parts of a product’s lifetime (i.e., mainte-
nance).

Tools alone do not comprise an IV&V team because they must fit into a pro-
cess. First, process management tools should be developed to (1) track existing
process practices and (2) automate process execution. Research in software
process automation has been successfully applied to a few, select domains of
well-understood problems, but much work is needed to apply automation effec-
tively in many domains. Research activities will emphasize the establishment of
robust management processes in order to provide for repeatability with respect
to the application and evaluation or research products.

1.4.2 Metrics

[t is necessary to assess the current needs and problems of software developers
who are using or wish to use IV&V in their efforts. Many surveys exist regard-
ing particular development methods, tools, and practices. The Facility and its
related research efforts will strive to consolidate some of these studies into a
repository and perform additional studies to determine the effectiveness of ex-
isting techniques. This repository will be a valuable asset for NASA not only in
determining which techniques are effective but also in comparing existing efforts
to past performances. In this manner, IV&V efforts can determine whether or
not current projects are "on track” relative to similar projects. This means
that new evaluation methods must be devised for assessing existing and new
software development and IV&V methodologies. These evaluation techniques
will be closely linked with the research studies of software process models (see
below).

1.4.3 Formal Methods

One of the most important directions toward solving problems at early phases
of the software development life-cycle involves the use of formal methods. A
formal method is any technique for specifying and verifying precisely that soft-
ware implementations agree with their specifications. The precision of a formal
technique allows no room for misinterpretation and permits automated and re-
peatable analysis of the software specifications. Informal methods, on the other
hand, leave room for different interpretations of the customer’s intent.

As promising as formal methods seem, they have serious limitations. Indeed,
one of the major barriers to the adoption of formal methods has been their high-
cost of application due to the high-skills needed to write and analyze formal
specifications. In addition, there is no guarantee that a formal specification is
correct since they are written by human developers.

Formal methods research covers a broad spectrum of software development
and V&V topics. Such research significantly impacts V&V research since in-
creased precision would eliminate many of the common problems caused by
current informal methods used in early life-cycle phases. Furthermore, different
levels of rigor can be applied to projects depending on the cost-benefit of apply-
ing a particular technique. For'example, projects involving possible loss-of-life
or high-cost equipment (e.g., a satellite) might benefit from high-cost formal
specifications. Much research is needed to leverage the advantage of formal
methods into development and V&V while reducing the costs of its application.
The Facility's research approach will strive to capitalize on the advantages that
a formal methods approach offers, while at the same time trying to reduce the
cost and complexity associated with its implementation.

1.4.4 Software Tools

A major part of the V&V research effort will be in the research and development
of new software tools. These tools will incorporate or improve upon previous
software tools at all phases of the software development life-cycle. Although
software testing is still an important part of many validation activities, emphasis
will be placed on those research areas that have been identified as having a
high return-on-investment related to V&V. Particular emphasis will be placed
on early life-cycle tools (requirements & design), software process modeling
tools, tools to aid in the generation of integrated specifications sets, tools for
configuration/interface management and software maintenance. The following
paragraphs provide some important considerations that need to be addressed
when developing software tools.

Because the use of a software tool often implies a particular class of software
process models and representation schemes, our concept of software tools must
evolve beyond the stand-alone, proprietary approaches of current computer-
aided software engineering (CASE) tools. Our tools must work in a framework
that accommodates existing commercial off-the-shelf (COTS) tools so that they
can evolve with industry standards and work external to NASA and the IV&V
Facility Research. These tools must be designed within various constraints so
that they are compatible with other tools and can seamlessly evolve in the face
of external pressures.

First, the software tools must address the needs of teams. Software devel-
opment efforts are team-oriented efforts that involve the coordination of large
groups of people. The application of IV&V to a software development effort im-
plies that separate groups (development and V&V) must coordinate their efforts
to make progress. In some cases, automated tools are a necessity to streamline
procedures that would otherwise be prohibitively expensive to coordinate and
perform in parallel.

Second, they must address the need for legacy. It is highly unlikely that de-
velopers will abandon current techniques immediately and adopt radically differ-
ent policies. Therefore, it will be necessary to develop strategies for incremental
adoption of new tools and techniques that accommodate legacy practices.

Third, they must address the need for maintenance. It is estimated that
40-60% of software project costs are in the maintenance phase alone. For long-
term efforts like Space Station and EOS this will particularly be the case. In
the maintenance phase, 60- 80% of the costs are for functional enhancements
of the software. Existing tools are primarily geared toward a single execution
of development phases (i.e., requirements, design, code, test). New tools and
related techniques are needed to address long-term sustaining software efforts
that will significantly reduce software costs in the long-run.

Finally, software tools must address the need for use in different processes.
Different application domains (e.g., embedded avionics software, database sys-
tems, etc.) will require different process models that depend on the level of

criticality of software, the level of assurance, the level of safety analysis, and the
resource constraints of the project itself.

Our research approach will require research activities that develop tools or
prototypes that focus on the above considerations and ensure that the quality
of their products are commensurate with and complimentary to their research
objectives and are consistent with their end-use functions.

1.5 Acknowledgments

I would like to thank the many people who have made the NASA/WVU Software
Research Lab a success. Mr. George Sabolish, Manager of Software Engineer-
ing Research and our project contracting officer, has provided valuable input
and assistance. He is truly an integral part of our research effort that makes
the partnership between NASA and the University work on a daily basis. Ms.
Kathyrn Kemp, Deputy Director of the NASA Fairmont Facility, has also pro-
vided invaluable interaction with the research team. Finally, Mr. Charles Mertz,
Director of the NASA Fairmont Facility, has provided sound advice, guidance,
and judgment in helping the research project set its goals and deliver valuable
products. All of our NASA counterparts have played important roles as we seek
to create research products based on actual, on-going software efforts.

On the research team itself, I would like to thank Todd Montgomery who
has been with the project since the beginning. I hope he continues to make
significant and important progress towards his Ph.D. degree. Many others have
played roles shortly after the project began: Ramana Reddy, Steve Easterbrook,
Edward Addy, Butch Neal, Frank Schneider, Wu Wen, Sudhaka Ramakrishnan,
Yunging Wu, Jeff Morrison, Wei Sun, Sudhir Koka, Nicholay Gredetsky, Aruna
Sonti, and many other students.

In addition, [want to thank people external to the NASA/WVU SRL who
have offered sound advice and guidance. These include: Nancy Leveson, John
Gannon, John Knight, Victor Basili, Frank McGarry, and many others.

Finally, I want to thank Ms. Vivian Jenab, the administrative secretary for
the NASA/WVU Software Research Lab, for her tireless efforts.

Jack Callahan
December 1995

Chapter 2

People

Several new personnel Joined during our second year. These include:

Dr. Steve Easterbrook is currently a professor at the University of Sussex.
He will join our group during a sabbatical for the next two years in Fair-
mont. Dr. FEasterbrook is the author of several articles in the area of
requirements engineering and has worked most recently with Dr. Anthony
Finkelstein on a paper published in the 1995 International Conference on
Requirements Engineering.

Mr. Edward Addy works in the areas of independent software nuclear safety
analysis and software reuse. Working at Logicon, Inc., he performed nu-
clear safety analysis on Tomahawk Cruise Missile systems. He was task
leader for developing the US Navy’s Software Reuse Implementation Plan
and conducted a pilot project in domain analysis for the Program Ex-
ecutive Office of Cruise Missiles and Unmanned Aerial Vehicles. He has
served as a site manager for Logicon Technical Services. Prior to Joining
Logicon, Mr. Addy taught Mathematics and Physics at the Navy Nuclear
Power School and the College of Wooster (Ohio). He received his B.S. in
math education from Michigan State and his M.S. in mathematics from
Wake Forest University.

Dr. Ralph Neal has worked in the software industry for over 20 years and
will soon complete his Ph.D. at Virginia Commonwealth University. His
research focus is on the measurement of software and the software pro-
duction process. Dr. Neal worked in the Computing Services Department
of West Virginia University for 15 years as an Administrative Systems
Specialist. Dr. Neal is a graduate of West Virginia University where
he obtained a bachelors degree in Computer Science. He has published
papers on total quality Management, measurement theory for software
metrics and object-oriented software metrics.

10

Dr. Frank Schneider has over 20 years of experience in various aspects of
software science in academia as a professor, in government, and in the
industrial arena as well. Dr. Schneider has worked as a quality assurance
engineer at NASA’s Jet Propulsion Laboratory since 1988. During that
time he has worked on standards generation and review, the Formal In-
spection process and most recently as an Independent Test Engineer. In
a discipline oriented approach he represented Quality Assurance as 1 of
9 disciplines in the design of the laboratory wide Systems Development
Management Guide (D-5000). He has been involved in technology trans-
fer of the Formal Inspection process at JPL and as a practitioner in a
wide variety of verification and validation areas. As an Independent Test
Engineer, he has authored a test plan for a subsystem for NASA’s new
34m Bean Waveguide Antennas to be installed as part of the Deep Space
Network at Goldstone, CA; Canberra, Australia; and Madrid, Spain. Dr.
Schneider will locate to Fairmont as a senior member of the research team,
and play a role in the Verification and Validation of software components
of the Cassini Spacecraft.

Dr. Wu Wen has a background in robotics and is interested in mobile com-
puting and reinforcement learning. He will be working with the NASA
New Millennium Project.

11

Chapter 3

Support Activities

This chapter describes support work at the NASA/WVU Software Research
Lab. These activities include our Technical Lecture Series, Research Quarterly
(a newsletter), Technical Report Series, and our World-Wide-Web resources.

3.1 NASA/WVU Technical Lecture Series

Information on the Technical Lecture Series and the speakers can be found on
the NASA/WVU SRL home page at http://research.ivv.nasa.gov.

June 19, 1995 - Dr. Mats Heimdahl (at NASA /Fairmont) of Michigan State
University will talk about his work on TCAS II requirements that he per-
formed while a Ph.D. student under Dr. Nancy Leveson.

July 7, 1995 - Dr. Frank Stomp (at NASA/Fairmont) of AT&T Bell Lab-
oratories will speak about his work on formal verification and validation
of complex telecommunication protocols.

July 19, 1995 - Dr. Frank Schneider (at NASA/Fairmont) of the NASA
Jet Propulsion Lab (JPL) will speak about his work on Software Quality
Assurance on Deep-Space Network ground support software projects.

July 20, 1995 - Dr. Eugene Zima (at WVU/Fairmont) of Moscow State
University will speak at WVU on is work in the area of symbolic alge-
bra and analysis.

August 11, 1995 - Dr. Walcelio Melo (at NASA/Fairmont) of the Univer-
sity of Maryland will speak about his work with Dr. Victor Basili in the
area of software metrics.

12

August 14, 1995 - Dr, Sreeranga Rajan (at NASA /Fairmont) from the Unj-
versity of British Columbia wi]] talk on his work at the Stanford Research
Institute under Dr. John Rushby on formal specification and verification
of software requirements.

August 16, 1995 - Dr. Roger Fujii (at NASA/Fairmont) of Logicon, Inc.,
a world recognized expert on IV&V, will talk about his experiences on
major IV&V efforts and his visions for future V&V research.

September 20, 1995 - Dr. John Yen (at NASA/Fairmont) of Texas A&M
University spoke on his research to develop a methodology for providing
intelligent assistance to requirements engineering.

December 15, 1995 - Amer Al-Rawas (PhD candidate at the University
of Sussex, England) spoke on his approach to improving communication
by identifying the weaknesses of different specification notations and com-
pensating for these through the provision of annotations.

January 18, 1995 - Dr. John Knight (Department of Computer Science,
University of Virginia) will present results from two case studies in de-
veloping software for safety-critical systems.

February 26, 1995 - Dr. Mark Klein (Applied Research Lab, Pennsylva-
nia State University) will speak on addressing the weaknesses with current
coordination technology.

3.2 V&V Research Quarterly

The NASA/WVU Software Research Lab publishes a quarterly newsletter, called
the V&V Research Quarterly (VRQ), that is available at, 304-367-8248 (Ms. Vi-
vian Jenab) or most are available via our WWW home page (see below).

3.3 Technical Report Series
We have published over 30 technical reports in the Lab. These can be ordered

at 304-367-8248 (Ms. Vivian Jenab) or most are available via our WWW home
page (see below).

3.4 World-Wide-Web Pages

We provide extensive information on our activities on the World-Wide-Web
(WWW). You can access information on the people, reports, and other publica-
tions listed in this chapter via our home page at http://research.ivv.nasa. gov/.

13

Chapter 4

Process

This chapter concerns work regarding software development and IV&V pro-
cesses. The areas covered include research regarding IV&YV in rapid develop-
ment environments, reuse-based environments, tools, and research on overall
process models between development and IV&V.

4.1 IV&V within Rapid Software Development

IV&YV as its practiced today is almost exclusively in the domain of the waterfall
life cycle model. Although the best IV&V is integrated into the development life
cycle, the deliverables are almost always due at the end of one of the waterfall
life cycle stages. At the Guidance, Navigation, and Control Rapid Development
Lab (GN&C RDL), the Aerospace and Flight Mechanics Division of Johnson
Space Center (JSC) is studying the rapid development process. How will the
rapid development process affect the practice of IV&V?

The researchers of the NASA/WVU Software Research Lab traveled to JSC
to witness the presentation of a proposed Research Technical Operations Plan
(RTOP) designed to provide process definition for the rapid development of soft-
ware. Several aspects of the proposed project are of interest to the researchers.

The first item of interest is the integration of Requirements IV&V into the
rapid development lifecycle. Rapid development (as defined in the presentation)
is characterized by using a “build-a-little, test-a-little” philosophy to provide
early integration of all hardware and software elements which are then incre-
mentally improved. Is it appropriate to perform IV&V on each release (often
called a drop) of the iterative process? If we are to do IV&V on each drop, are
we not doing extra work by pointing out the requirements that were left out on
purpose because they were to be picked up in later drops? If we don’t perform
IV&V on each drop, is there another way to keep the independent verifiers in
the development loop? Perhaps the answer will be to develop the requirements

14

matrix and assign the requirements to ”drops”. No one knows, of course, SO
we’ll have to keep you posted as the RTOP progresses.)

The second item of interest is the verification of auto-coded source code. The
fourth generation code generator currently being used in this project has the
property of generating entirely reordered code when a seemingly minor change
has been made to the data flow diagram from which the code is generated.
Should the source code be verified each time it is regenerated? In an analogous
situation, machine code is not verified each time the source code is recompiled;
indeed the machine code is never verified. Compilers are certified and thereafter
accepted as accurate. Perhaps the code generator should be certified. If an
uncertified code generator is being used, what are the proper IV&V activities
to insure the accuracy and completeness of the project?

The third item involves identifying measures that capture the dimensions
of the process and the product. As a product measurement, lines-of-code has
long been recognized as a misleading metric. With the acceptance of code
generators (where the code may vary greatly from one drop to the next), lines-of-
code becomes absolutely meaningless. Metrics designed to measure structured
systems have had limited success in measuring object oriented systems. The
rapid development paradigm adds another dimension to the problem. How
do you measure a project that is by definition only partially complete? The
RTOP plans to emphasize function points as desirable units in which to measure
productivity. Function points may or may not turnout to be the final solution
but they are almost certainly a good first approximation of the units to measure.

4.2 IV&V Within Reuse-Based Software Engi-
neering

Verification and Validation (V&V) methods have been used to increase the level
of assurance of critical software, particularly safety-critical and mission-critical
software. This activity is often performed by an agent independent from the
developing organization, and is then called Independent V&V. Software V&V is
asystems engineering discipline that evaluates the software in a systems context.

The V&V methodology has been used in concert with various software devel-
opment paradigms, including waterfall, spiral, and evolutionary development,
but always in the context of developing a specific application system. How-
ever, the reuse-based software development process separates domain engineer-
ing from application engineering in order to develop generic reusable software
components that are appropriate for use in multiple applications.

The earlier a problem is discovered in the development process, the less costly
it.is to correct the problem. To take advantage of this, V&V begins verification
within system application development at the concept or high-level requirements
phase. However, a reuse-based software development process has tasks that are

15

performed earlier, and possibly much earlier, than high-level requirements for a
particular application system.

In order to bring the effectiveness of V&V to bear within a reuse-based
software development process, V&V must be incorporated within the domain
engineering process. To date, no model has been developed for this. Failure to
incorporate V&V within domain engineering will result in higher development
and maintenance costs due to losing the opportunity to discover problems in
early stages of development and having to correct problems in multiple systems
already in operation. Also, the same V&V activities will have to be performed
for each application system having mission or safety-critical functions.

On the other hand, it is not possible for all V&V activities to be transferred
into domain engineering, since verification extends to installation and operation
phases of development and validation is primarily performed using a developed
system. This leads to the question of which existing (and/or new) V&V activi-
ties would be more effectively performed in domain engineering rather than in
(or in addition to) application engineering.

The Reusable Objects Software Environment (ROSE) is a new software de-
velopment paradigm adopted by the NASA JSC Mission Operations Directorate.
This process is intended to reduce software maintenance costs for the Flight
Dynamics and Design (FDD) software through the adoption of Object-Oriented
Software Engineering and leveraged reuse. Some of the reusable software com-
ponents developed using ROSE will be used in mission and safety-critical appli-
cations.

The ROSE Project has chosen to use the Object Modeling Technique (OMT)
being developed by James Rumbaugh, et.al. The project will implement the
models using Paradigm Plus, which supports Object, Dynamic, and Functional
models, and will add an animation capability to the Dynamic model. They will
also add constraint checking to all model types to provide consistency and inte-
gration checking across the models. These capabilities will be used to simulate
the models as a V&V activity.

Along with members of the ROSE project that are participating in domain
engineering and in V&V activities, we will be exploring the question of which
V&V activities to perform in domain engineering. We will also investigate the
impact of domain engineering V&V activities on V&V activities performed dur-
ing application engineering. These activities may include dependencies on con-
siderations such as the domain area, the reuse methodology, the reuse business
strategy archetype, and the domain model representation.

4.3 V&V Tools Under Development

Software tools represent a means for development teams to improve their process
through formalization and automation of their activities. By developing new
tools or adapting existing tools, a team can formalize their existing practices

16

and incrementally improve their process. We do not advocate the purchase of
expensive Computer-Aided Software Engineering (CASE) tools without careful
consideration, rather we believe that the act of developing or adapting tools can
lead development and IV&V teams to discover aspects of their processes.

By developing analysis tools, IV&V teams can discover many things about
the software development and IV&V processes. For instance, a tool developed
by CTA on EOSDIS helps keep track of interface definitions between system
components. Early in a project these interfaces are abstract and ambiguous.
As the system design evolves, the specific details of system component inter-
faces are refined. The CTA tool helps keep track of the relationships between
abstract interface descriptions and specific interface definitions later in the pro-
cess. Inconsistencies in these relationships can indicate problems and potential
sources of misunderstandings in the project design between different develop-
ment vendors. By developing this tool, the EOSDIS IV&V team has learned
much about the process of system architecture development within the EOSDIS
development effort.

We have taken a similar approach within the IV&V research effort. By
developing V&V tools, we hope to improve the practice of V&V on existing
projects and better understand V&V analysis and its relationship to the software
development process. '

4.4 The Emerging Paradigm

Many questions have been raised regarding the role of V&V within new software
development paradigms such as Rapid Development Methods (RDMs). RDMs
emphasize rapid development of software through incremental deployment of
product functionality. They allow software products to evolve as project re-
quirements change, as a project undergoes budget and schedule pressures, and
as hardware platforms evolve. Many companies are now using RDMs to build
and maintain software product lines.

What is the role for IV&V in this new paradigm? Such questions are impor-
tant to ask as software development organizations mature in their enterprises.
For V&V, the RDM paradigm means that analysis activities must be tightly
coupled with and parallel development activities. Analysis from IV&V must
provide immediate or near-immediate feedback into the development process.
This feedback must be meaningful and help guide development organizations
in their decisions regarding design changes, functional enhancements, and bug
fixes.

RDM is similar to software prototyping under the pragmatic view that most
prototypes evolve into products anyway. Rapid development implies that the
designers of the product are concerned primarily with providing functionality
and refining requirements in an operational fashion (aka prototyping). This
concern with functionality can lead to poor long-term design decisions and de-

17

signers can also overlook subtle, complex interactions between functions. In
other words, the designers are most concerned with nominal behaviors of the
software product.

An IV&V organization plays an essential role in the RDM paradigm. [V&V
is concerned with off-nominal behaviors. IV&V tries to find the subtle, complex
interactions between functions and components that take some extensive anal-
ysis. These are exactly the behaviors that are of little interest to the Design
group in the prototyping and RDM models of software development. These two
groups, Design and IV&V, can work together in a synergistic fashion to pro-
duce high-quality software, on-time, and within budget. One group can focus
on functionality while the other is concerned with long-term design goals. These
long-term goals are important to provide a conceptual framework within which
a product can grow in functionality.

This bipartite approach, called the Rapid Design and Test (RDT) paradigm,
is an emerging paradigm in software development organizations. We do not
claim that RDT is something new, rather that it is already being practiced
widely and has only recently been identified recently. For example, Microsoft
Corporation employs an RDT model in developing their products. Their tech-
nical staff consists of 1800 ”software design engineers” and 1800 "software test
engineers” who work in separate, co-equal groups. These groups coordinate
their activities through tightly-coupled "daily builds” that force product up-
grades based on bug fixes and new functionality. More information on this
paradigm will be available in a book by Michael Cusumano and Richard Selby
entitled Microsoft Secrets to be released in September 1995 by Prentice-Hall.

An IV&V organization plays the role of a "test” organization in an RDT
model throughout the development lifecycle. If we think of any IV&V analysis
as a "test” of the current design, IV&V can provide immediate feedback in
a synergistic fashion to a development organization. It can look for subtle,
complex interactions between system components and functions. IV&V can
alert development to their presence as early as possible in the lifecycle. IV&V
can fulfill both of its primary objectives within the RDT model: increase quality
through immediate, added-value feedback and long-term avoidance of high-cost
errors. The RDT paradigm affirms IV&V’s value and role especially within
large, complex software development projects.

4.5 IV&V Eﬂ'ectiveness

One of the most important questions facing the manager of any software devel-
opment effort is "How do I build a high-quality software system within my time
and budget constraints?” The answer to this question, if one exists, is likely to
be complex. As Fred Brooks states, there is "no silver bullet” that will help
us build software quickly and easily because software, by its very nature, is
inherently complex. Independent verification and validation (IV&V) has been

18

promoted as an effective technique used on the development of large, complex
software systems to build high-quality software on time and within budget. But
how much IV&V is appropriate and how does a manager determine its effec-
tiveness? Simple answers to these questions are likely to confound the problem
and oversimplify the issues.

Strong evidence points to the effectiveness of IV&V on large, complex projects.
Extensive reports such as the JPL Study on IV&V Effectiveness, the Leveson
Assessment of Shuttle Flight Software and other many other references strongly
recommend IV&V on major projects where cost, quality, and schedule problems
can have dire consequences. The lack of a continuous, independent technical re-
view of project artifacts and activities can lead to disastrous problems. Further-
more, projects with some form of IV&V practiced from early in the development
lifecycle have reported significantly better success rates. Such assessments, how-
ever, are anecdotal and quantitative analysis is limited.

We believe that IV&V activities are fundamental to large, complex projects.
This currently makes it difficult to clearly identify the benefits of IV&V in a
quantitative manner since it is difficult to separate the added-value of IV&V
from the rest of the software development effort. For example, issues raised by
the IV&V contractor at milestone reviews are not always captured. Likewise,
suggested solutions by [IV&V are not always recorded during reviews. It is un-
realistic to expect that all reviews, suggestions, comments, and communication
be recorded in detail regarding IV&V activities because such an effort would
put an undue burden on IV&V practitioners.

Furthermore, there is a Hawthorne Effect on software development due to
the presence of IV&V on a major project. The mere presence of a group such
as IV&V in the process lifecycle has significant effects on the behavior of the
software development group itself. It is very difficult to assess the hypothetical
effect of the absence of IV&V in such an environment.

All of these points lead us to a preliminary conclusion that simple metrics do
not tell the entire story regarding IV&V effectiveness on large, complex projects.
This has long been true for measuring other aspects of the software development
effort such as programmer productivity, software reliability, estimated errors per
line of code, code complexity, and a host of other measures. These measure-
ment problems have been and continue to be the subject of ongoing research.
Measuring IV&V effectiveness is no less difficult a problem.

Under the direction of Dr. Ralph Neal at the NASA/WVU Software Re-
search Lab here in Fairmont, we have begun to examine empirical data on major
software projects that have employed [IV&V. Dr. Neal and Dr. Joshi of Fairmont
State College are conducting an analysis of IV&V data on the Day-Of-Launch
I-Load Update (DOLILU) software for Space Shuttle Ground Support. This
analysis will help form a basis for sound software metrics on [V&V effective-
ness.

Current software measurement is crude in the sense that at best it reveals
potential strengths and weaknesses in a software development process and its re-

19

lated artifacts. Current techniques do not provide definitive results that provide
designs, but rather provide design support to management.

The fundamental relationship between IV&V and the design aspects of soft-
ware development is very deep and not well understood. In the last issue of
the VRQ (January-March 1995), we reported on research on a paradigm that is
emerging in software engineering where analysis from IV&V provides immediate
or near-immediate feedback to designers throughout the software development
process. This feedback helps guide development organizations in their decisions
regarding design changes, functional enhancements, and bug fixes. In such a
model, the design part of development is concerned primarily with nominal be-
haviors of the software product. IV&V, however, is concerned with off-nominal
behaviors of the software system. IV&YV tries to find the subtle, complex inter-
actions between functions and components that take some extensive analysis.
These are exactly the behaviors that are of little interest to the design group,
especially in prototyping, incremental, evolutionary and other rapid develop-
ment models of software development. These two groups, design and IV&V,
can work together in a synergistic fashion to produce high-quality software,
on-time, and within budget. One group can focus on functionality while the
other is concerned with long-term design goals. These long-term goals are im-
portant to provide a conceptual framework within which a product can grow in
functionality.

An IV&V organization plays a vital and fundamental role throughout the
development lifecycle. If we think of any IV&V analysis as a "test” of an
evolving design, IV&V an provide immediate feedback in a synergistic fashion
to a development organization. It can look for subtle, complex interactions
between systern components and functions, IV&V can alert development to
their presence.

Approaches that use the number of issues reports (e.g., RID, DR, CR, DITR,
etc.}) found by IV&V versus the total number of reports created on a project
oversimplify the role of IV&V on a project. Such approaches ignore the nature
of the software process relative to the impact and frequency of reporting on re-
quirements, design, and code activities. For example, [V&V may be identifying
significant problems, but if synchronization is infrequent between development
and IV&V then the benefits of IV&V can be lost. Another example concerns
traceability of activities throughout the software development lifecycle. If re-
quirements are not updated and do not trace clearly to design and code, then
an outstanding requirements review may have little impact.

Studies have shown that IV&V can be a highly effective approach to software
development if it is employed correctly. Any measurement must take these
dimensions of the process into account before quantitative statements can be
made about the effectiveness of IV&V on large, complex projects. Until research
is complete, project managers are ill-advised to adopt unqualified measurements

and must examine anecdotal evidence on their own project to determine the
benefits of IV&V.

20

Chapter 5

Metrics

This chapter describes ongoing work in the area of softare metrics in IV&V.
We discuss current experiments, tools, and preliminary results of collection,
processing, and analysis of software metrics for development and V&V activities.

5.1 Defining Metrics for the ROSE Project

A Memorandum of Understanding (MOU) is being considered among NASA/WVU
Software Research Lab (WVU), NASA Johnson Space Center (JSC) NASA
Mission Operations Directorate (MOD), and Rockwell Space Operations Com-
pany(RSOC) to study the metrics being collected by the ROSE project. The
thrust of the study is to identify the smallest set of metrics both necessary and
sufficient to measure the important dimensions of the software.

It is not beneficial to measure the same dimension of an object by more than
one method. Each method will have its own degree of accuracy and its own cost
of application. Once the necessary degree of accuracy has been established, the
most cost effective method that delivers that level of accuracy should be the
measurement of choice.

This study will:
1. identify important dimensions of the software,
2. classify metrics by the dimension{s) they measure, and

3. use multivariate statistical methods to investigate the parallelism/orthogonality
of the captured metrics.

21

9.2 Misrepresentation of Software Project Statis-

tics

It is widely acknowledged that software projects often over-
schedule, and in some cases never deliver usable software.
bad is the problem? When faced with this

cite the GAO study,

contracted for was usable as delivered. The co

study were:

50% of contracts had cost overruns
60% of contracts had schedule overruns

45% of software contracted could not be used

29% of software was never delivered
19% of software contracted had to be reworked to be used

3% of software contracted had to be modified to be used

question, many s
published in 1979, which stated that on

2% of software contracted was usable as delivered

These data are correct, but highly misleading. To see why,
take a closer look at the study itself. The study ex

run on budget and

But exactly how

oftware engineers
ly 2% of software
mmonly cited figures from that

it is necessary to
amined a number of software

contracts, commissioned by various federal agencies, for custom-built business

and administrative systems. Two surve

case studies.

ys were performed, followed by detailed
The first survey covered 163 contractors, but the results were

never published. The second covered 113 Federal data processing personnel with

contracting experience. The results of this su
the percentage of respondents saying that ”
happens rarely (57.1%) or never (20.5%)

some mistake?

rvey are shown below. Compare
software paid for but never used”
with the set of figures above. Surely

is difficult to modify

Very Fairly | Not very | Very | Never | Don’t

common | common | common | rare | occurs know
Software development 21.2 29.2 25.7 9.7 6.2 8.0
has dollar overrun
Software Development 30.1 31.9 25.7 8.0 1.8 2.7
has calendar overrun
Delivered software 8.8 34.5 35.4 13.3 6.2 1.8
must be corrected
or modified by
in-house programmers
Software is paid for 0 3.6 16.1 57.1 20.5 2.7
but never used
Delivered software 5.3 37.2 38.1 11.5 44 3.5

The first set of figures above were produced from the second part of the

22

sample, but the figures give a misleading impression of the nine projects studied:
2% (by cost) sounds a lot more dramatic than 11% (or one ninth)!

The real aim of the study was not to determine what proportion of projects
fail, but to find out the causes of failure. The table below indicates that the pri-

Case Number

Cause 11213747576 7(81]9

Agency overestimated its own X | x X X

state of progress when it let the contract

Incorrect agency management action, X [x X X

such as using inappropriate contract

Agency failed to specify requirements XIx|x|x{x

adequately ’

Agency over-committed itself x| x X | x X

Agency failed to manage during execution, | x | x x| x X

including excessive changes

Agency failed to adequately X |x|x X b'e
‘ﬂspect and test

There are a number of important lessons to be learned here. The first is
the danger of misrepresenting quantitative results from software projects. The
trend towards more measurement of the software process, and the drive for em-
pirical validation of process improvements, should increase our knowledge of
the software process. But there is also a danger that results will be misinter-
preted, leading to ill-advised decisions. For example, there have been a number
of attempts to measure the cost effectiveness of IV&V. Cost effectiveness here
usually means “is the extra cost of an IV&V contract recouped in savings from
fewer errors and reduced maintenance costs?” . Suggestions for calculating this
typically involve determining the cost to detect and correct various types of er-
ror on projects that do not use IV&V, as a way of estimating the savings from
early detection of similar errors on projects that have [V&V.

23

Most such studies have concluded that IV&YV is cost effective. Figures for
the benefit to cost ratio for IV&V have been as high as 5 to 1. A simple
interpretation of these figures might be that for every $1 spent on IV&V, $5 are
saved in fixing errors. Of course, we shall avoid such simple interpretations, as
this ratio is highly dependent on the type of project, and the way in which IV&V
is applied. There is also a law of diminishing returns for IV&V spending, with
the optimal figure generally reckoned to be around 12-18% of the development
cost, depending on the size of the project.2

One of NASA’s studies, however, indicated that IV&V was not cost effec-
tive. In 1982, Goddard’s Software Engineering Laboratory (SEL) found that
introducing IV&V resulted in a huge overall productivity decrease, representing
an increase in cost of around 85% over similar software products. At the same
time, there was no significant benefit in any of the areas measured except for an
84 to 90% decrease in requirements ambiguities and misinterpretations. They
found no significant decrease in the number of design errors detected, and no
significant decrease in the cost to fix errors. This led them to conciude that
IV&V was inappropriate for their environment, a conclusion that still appears
in SEL reports, thirteen years later.

Just as it proved important to question the interpretation of the GAO results,
so the interpretation of the SEL’s study should be questioned. Firstly, it is not
clear the technique used in the SEL study really was IV&V. The "IV&V” team
was a part of the same contractor as the development team, and certainly did
not have managerial independence. Secondly, the IV&V team had to use the
same (limited) resources as the developers, and competition for these resources
appears to have worked to the detriment of both teams. In fact, the projects
studied were a part of an operations environment, rather than a development
environment, in which developers already had a low priority for computing
resources. The addition of an IV&V team merely exacerbated this competition.
Finally, the measures used in the study only cover the development phase, not
the whole lifecycle, so savings from improved maintainability were not measured.
Hence, we should conclude that not only is the applicability of the result to other
projects severely limited, but that the results themselves are in question. Even
the participants of the study have voiced their concerns over the interpretation
of the results.

To conclude, empirical results from software projects have to be examined
very carefully before being accepted by the software engineering community. We
have criticized the interpretation of two studies, both of which are more than
ten years old. However, in both cases it is far more common to find the studies
cited as representative results than it is to find them questioned.

Finally, note that the type of empirical work we have described depends
very much on the ability to compare projects. For example, the cost effective-
ness of a particular technique can only truly be calculated by isolating it as the
only variable factor over two or more projects. At the very least, this means
comparing two or more projects of similar size, application domain and devel-

24

opment environment, one of which used the technique and one of which did
not. Hence, evaluating the cost effectiveness of IV&V on a program such as the
Space Station is impossible, as there is no other comparable project anywhere.
More importantly, if there were 3 comparable project, it is unlikely that such a
project would risk not having IV& V!

(1] Blum, B. (1992) ”Software Engineering: A Holistic Approach”, Oxford
University Press. _

[2] Lewis, R. O. (1992) ”Independent Verification and Validation: A Lifecycle
Engineering Process for Quality Software”, New York: Wiley.

5.3 Managing Software Pro Jjects Using the WWW

One important aspect of software development and IV&V is measurement. Un-
less a software development effort can be measured in some way, it is difficult to
Judge the effectiveness of current efforts and predict future performance. The
Web-Integrated Software-metrics Environment (WISE) is an environment that
provides software projects with the capability to develop applications that al-
low project managers and developers to coordinate project activities and collect
metrics. S

Collection of metrics and adherence to a process are difficult tasks in a
software project. Watts Humphries in his book Managing the Software Process
states:

The most disastrous mistakes are often made when the project is un-
der the greatest schedule pressure. These are often caused by a loss
of change control that started with a quick object patch. While the
harried programmers invariably intended to document their changes
whenever there was time, it is extremely difficult to remember pre-
cisely what was done and why.

Automated systems that handle change requests, issues, problem reports,
activity log entries, and other process documents provide an excellent platform
for tracking the status of the project. The WISE project management tool

WISE began as an idea to put a programmer’s " to-do” list on the WWW and
allow programmers to view their own metrics as well as group metrics. WISE
also tracks ”to-do” items between members of a group. For example, an error
is logged initially as an open issue (i.e., a "to-do” item). Other developers on
the project see this new open issue appear on their ”to-do” lists. A developer
will mark the issue as fixed when the problem has been rectified. Fixed issues

25

show up on a test engineers ”to-do” list who will mark the issue as closed when
successfully retested.

WISE also serves as a performance indicator. WISE can track when changes
to an issue occur and provide project metrics in embedded graphics (i.e., plots,
pie charts, etc.) within WWW pages. We have created several views of group
and individual metrics on projects. Individuals can control access to their data
by others and group views provide only aggregate information.

5.3.1 An Overview of WISE

The Web Integrated Software Environment (WISE) is a system for managing
the dynamics within a software development effort. Access to documents and
the life cycle of issue reports can be managed by standard WWW browsers (e.g.,
Mosaic, Netscape, etc.). Web-browsers and other user programs that can access
the WWW can be used for this automating effort. Some advantages that such
an automated effort brings to a development group are:

¢ WISE overcomes the geographical barrier. By using a WWW client one
can access another resource anywhere on the Internet. This benefits the
software teams who can access the tool from any place.

* WISE overcomes the communication barrier. Encourages collaborative
software problem solving.

» WISE facilitates problem solving. Software managers can effectively track
the progress of their work group by using performance measures built
into the tool itself. WISE supports different views the tool supports of
a problem database and helps the managers handle the large amount of
detail and help them isolate problems early and suggest timely action

o WISE provides data continuity. Another advantage is that changes to the
database are reflected in all views. There 1s a flow of data from one to
another and every update is kept track of. This kind of continuous flow of
data from the user to the managers and back, helps coordinate the work
products of many different people who work on common projects.

5.3.2 A Brief Description of WISE

WISE is a WWW-based issue tracking tool. The clients run a browser program
and a WWW server answers client requests. With the vast variety of browser
programs for UNIX, Macintosh, and Windows, one can access the WISE with
great ease.

The user of the tool specifies the URL (Uniform Resource locator) of the
information server, logs into WISE, and views their personal ”to-do” ljst. They
may perform one of the many kinds of operations like logging a new issue or

26

acting on existing issues. They may also view their individual or group metrics.
Some group metrics are also available to the general public.

The current backend of WISE is an Oracle database, but this is being ex-
tended to work with other SQL-based engines. Every time a user selects an
option, a query containing the user’s request is sent to the backend through a
gateway that helps connect to the underlying database. The information server
returns with the data and the user views them. To solve the gateway problem
from the WWW server to the Oracle backend, we initially decided to use an
in-house software called Web* which had an Orbix interface to Oracle embedded
in Tcl/Tk. We implemented a prototype tool using this software but were not
very comfortable with the backend and the dependencies it attaches to the tool.
So we decided to search the Web for better tools.

While surfing through the net we came across a gateway program that pro-
vides a form interface in Mosaic to SQL databases. GSQL-ORACLE is a slightly
modified version of the same software except that it is specialized for Oracle SQL
backends. The working of the tool is as follows: GSQL parses the forms based
on some specification files we write and creates SQL statements. Then GSQL
invokes the oracle backend with the SQL query and the arguments filled in
by the user. The backend processes the query and returns HTML documents.
These results are sent to the client running one of the standard browsers.

5.3.3 Current Status of WISE

We now have a prototype tool working. We feel that it is very important to
use this tool in our own efforts. Indeed, we are using WISE to manage WISE’s
development. The current version of the WISE tool uses GSQL as a backend
to our Oracle gateway (a DEC machine running RISC-ULTRIX 4.3). Many
different browsers can access WISE through the World-Wide-Web. There are
a limited set of metrics available, but these are growing rapidly as we see the
need for them in our projects.

WISE also provides metrics on projects in the form of graphs that compare
aspects of the group activities. The system can answer queries about the evo-
lution of issue reports in the system. For example, a manager can query the
number of open vs. closed issue reports over time in graph form. The perfor-
mance of individuals are also available but only to each individual. WISE has
strict boundaries on the availability of metric data on individual performance.
WISE allows individuals control over the visibility of their metrics to managers
and others. '

WISE is non-intrusive because it provides a status list to each developer in
the team. Each element in the list can be acted upon which will change the
element’s status. This might make it show up on another developer’s status list.

We are also working on a programming language to specify WISE forms.
The current system is ”hard-wired” in CGI scripts, but the Wise Programming
Language (WPL) is a software process language that allows form views to be

27

specified within the software process. A WPL specification is a collection of
form definitions and views. The composition of the forms and views defines the
totality of the software process. Thus, the process is not fixed or globally defined
by a manager, but is dynamic and changes based on the roles of development
personnel. The composed process can be checked for consistency to ensure that
invariant and liveness properties are conserved.

The WISE project (Jack Callahan, Sudhakar Ramakrishnan & Wei Sun)
would like to thank Jason Likkai at NCSA and James Pitkow at Georgia Tech
for their help. We also thank a number of people at NASA IV&V facility at Fair-
mont and CERC. A demo of WISE is available at http://research.ivv.nasa.gov/.

Interest in our WWW Integrated Software Environment tool, called WISE,
has been tremendous! We have received correspondence from over 100 sites
world-wide asking for the software and over 10 sites submitted proposals as part
of an Alpha test plan. These sites include Sun Microsystems, IBM, Salomon
Brothers, and Cnet Online. To find out more about WISE, please look at our
research WWW home page at http://research.ivv.nasa.gov/. You will find a
brief demo of WISE at this site.

The Web Integrated Software Environment (WISE) is a system for managing
issue reports within a software development effort. Access to documents and
the life cycle of issue reports can be managed by standard WWW browsers (e.g.,
Mosaic, Netscape, etc.). Web-browsers and other user programs that can access
the WWW can be used for this automating effort.

WISE began as an idea to put a programmers "to-do” list on the WWW
and allow programmer to view their own and group metrics. WISE also tracks
"to-do” items between members of a group. For example, an error is logged
initially as an open issue (i.e., a "to-do” item). Other developers on the project
see this new open issue appear on their "to-do” lists. A developer will mark the
issue as fixed when the problem has been rectified. Fixed issues show up on a
test engineers "to-do” list who will mark the issue as closed when successfully
retested. WISE also serves as a performance indicator. WISE can track when
changes to the issue occurred an provide project metrics in embedded graphics
(i.e., plots, pie charts, etc.) within WWW pages. We have created several views
of group and individual metrics on projects. Individuals can control access to
their data by others and group views provide only aggregate information.

We are also working on a programming language to specify WISE issue forms.
The current system is ”hard-wired” in CGI scripts, but the Wise Programming
Language (WPL) is a software process language that allows form views to be
specified within the software process. A WPL specification is a collection of
form definitions and views. The composition of the forms and views defines the
totality of the software process. Thus, the process is not fixed or globally defined
by a manager, but is dynamic and changes based on the roles of development
personnel. The composed process can be checked for consistency to ensure that
invariant and liveness properties are conserved.

28

Chapter 6

Testing

Testing remains one of the most practiced approaches to sofwtare quality as-
surance. We outline research that is exploring new testing techniques in this
chapter and the next chapter (Classification).

6.1 Validation Testing — An Automated Approach

The test approach defined within this white paper can be tailored to various
levels of testing (i.e. unit level, integration, or system certification/validation).
However, the focus of this paper primarily addresses system certification/validation
testing. The intent of this test approach is to provide mechanisms by which
validation of a system can be easily confirmed relative to the execution of a
test suite. The basis for this approach relies heavily on the establishment of
a requirements database and the allocation of requirements to functional test
threads, test cases, and test procedures. The automation associated with the
approach requires capturing functional test thread, test case, test procedure
and the recorded test session result information in a relational database man-
agement system (RDBMS). Once a process for capturing this information ina
RDBMS is adopted, a determination of the requirements satisfied by successful
test steps/procedures is deterministic. Structure Query Language (SQL) queries
can be issued to the test database to determine certification status at any given
point in time, thereby exploiting the power of SQL so that management indica-
tor reports can be generated during certification testing activities.

The automated/database oriented approach advocated yields the greatest
benefit and is essential to validation testing for large systems. When integrating
or validating large systems, the amount of information that must be managed
is too great to address by the traditional hard copy document approach. In
addition to the obvious information management benefits, the following benefits
may be realized by utilizing this automated database driven test approach:

29

® provides a basis for automating test resource scheduling (i.e. hardware,
software, etc.)

* allows management real-time access and insight into test activities to de-
termine performance against schedule

¢ supports regression testing and allows for variance analysis between testing
activities

¢ enhances information sharing among the test team

o establishes a foundation for dumping database data to deliver hard copy
plans, procedures, and test reports

¢ provides a forum for recording test discrepancies in support of discrepancy
reporting

¢ automates the collection of test metrics allowing for metrics reports to be
generated based upon database queries

6.1.1 Definitions

1. A functional test thread as referred to in this paper coincides to an end-
to-end path through the system. In defining a thread, the inputs and
expected outputs must be identified. Note that a thread may span several
system components, thus a single functional test thread may be associated
with one or many test cases. .

2. Refer to the MIL-STD-498 documentation standard for a definition of a
test case and the information that should be maintained for each test case.
Note that there is a one-to-one correspondence between test cases and test
procedures.

3. Refer to the MIL-STD-498 documentation standard for a definition of a
test procedure and the information that should be maintained for each
test procedure.

6.1.2 Recommendation

1. Develop a client/server application where test thread, test case, test pro-
cedure and test result information can be input on the platform most
used. Several Rapid Application Development (RAD) tools exist which
create client applications for PC, Mac, and Unix platforms. Consider
Powerbuilder from Sybase (formerly a Powersoft product), SQLWindows
from Gupta Corporation, and JAM from JYACC Corporation. The bene-
fits associated with building a client/server application include sharing of
data between geographically dispersed individuals or teams and support
for either centralized or distributed databases.

30

2. Select an RDBMS sufficient to support the resource requirements for the
project. Criteria should include number of users, amount of data, etc.

6.1.3 Implementation

A Test Management Database (TMDB) application was built for the Earth Ob-
serving System Data and Information System (EOSDIS) Core System (ECS)
integration and system certification test activities. The MIL-STD-498 was uti-
lized to define much of the information supported by the TMDB schema. The
TMDB is a client/server application that was built using the Gupta SQLWin-
dows product. The TMDB is a PC/Windows client application which commu-
nicates to an RTM/Oracle database and a Sybase SQL Server database, both of
which reside on a Sun SPARC 1000 running Solaris. The Requirements Trace-
ability Management (RTM) COTS tool from Marconi serves as the requirements
repository delivered by the developer. RTM uses Oracle as the RDBMS where
it stores data. All test thread, test case, test description, and test result infor-
mation is stored in the Sybase SQL Server RDBMS. Gupta Corporation is in
beta test of a Unix client and is expected to support Mac clients in the second
quarter of 1996.

6.2 Requirements-based Testing and Analysis

How should we represent requirements for a large software system? Many
projects still rely on natural language as the main way of representing re-
quirements. And yet for complex requirements, natural language is notoriously
ambiguous. This article describes a simple experiment to demonstrate the am-
biguity of English language requirements, and discusses the benefit of using
redundancy to improve detection of ambiguity.

Consider this requirement, from the FDIR (Fault Detection, Isolation and
Recovery) requirements for Space Station:

(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI
shall set the e,c,w, indicator identified in Table 3.2.16-1I for the cor-
responding RT to ”failed” and set the failure status to "failed” for
all RT’s on the bus upon detection of transaction errors of selected
messages to RTs whose 1553 FDIR is not inhibited in two consecu-
tive processing frames within 100 millisec of detection of the second
transaction error if; a backup BC is available, the BC has been
switched in the last 20 sec, the SPD card reset capability 1s inhib-
ited, or the SPD card has been reset in the last 10 major {(10-second)
frames, and either:

1. the transaction errors are from multiple RT’s, the current chan-
nel has been reset within the last major frame, or

31

2. the transaction errors are from multiple RT’s, the bus channel’s
reset capability is inhibited, and the current channel has not
been reset within the last major frame.

We gave this requirement to four different people, and asked them to produce
a truth table to clarify the conditions under which the required function should
be provided. We received four different answers, which differed in both the num-
ber of conditions identified (i.e. number of rows in the table) and the number
of combinations under which the function would be activated (i.e. columns in
the table).

The differences in the responses show that the original requirements state-
ment is riddled with potential ambiguities. For example, the mixture of “ands”
and “ors” the requirement is a problem because, unlike programming languages,
English does not have any standard precedence rules. It is not clear how to
scope the various subclauses, either. For example, the timing condition within
100 millisec... could refer to the inhibition of the FDIR, or to one or both of
the required setting operations. With some domain knowledge, it is possible to
guess the most likely interpretation, but this is by no means a trivial task, and
there is no guarantee that everyone who needs to read this requirement will get
it right. o

Ideally, we would like to ensure that everyone who reads a requirement will
interpret it in exactly the same way, the way that was intended. As with any
communication act there is a balance of responsibility between the author and
the reader: the author must take steps to ensure her words are not open to
misinterpretation, and the reader should take steps to interpret carefully the
meaning of the words. The author cannot be expected to anticipate all stupid
or disingenuous interpretations, but at the same time is under an obligation to
ensure that the meaning is clear for the intended audience.

One could argue that our experiment was unfair, as the requirement was
taken in isolation, and the people we gave it to didn’t have the domain knowledge
to help interpret it. Furthermore one could argue that the designers will know
how to interpret it correctly, through interaction with the team responsible for
writing it. Unfortunately, these answers undermine the whole point of writing
down requirements: it is important to capture all the relevant information so
that a wide range of people (implementors, testers, maintainers, users, technical
authors, etc) can access it over a long period of time.

So how can we reduce the chance of misunderstandings occurring? A quick
and easy solution is to exploit redundancy to help detect misunderstandings.
Consider this simple function specification:

This function shall compute the square root of its input, to within three
places of decimal, i.e. for input x, it will output y such that x <y jx+0.001

Strictly speaking this specification is redundant: either the English language
part, or the mathematical definition could be missed out. However, the redun-
dancy acts as a double check that we have understood the requirement. If we

32

read both parts of the specification, and they seem to say the same thing, we
can be much more sure that we have understood what the author intended. If
the two parts seem to be saying different things, then either we have misread
one of them, or the author made a mistake.

In the example above, the two parts do not say the same thing. The math-
ematical description says that the error can only be positive, i.e. that the value
returned is never less than the actual root. The English description does not
include this restriction. Such a restriction would be very important to the imple-
mentor, because most square root algorithms cannot guarantee a positive error.
Having spotted this, we can now go back and check which version is correct. If
we had only been given one part, we would not have thought to question this
issue.

We can adopt a similar approach throughout a specification. For example,
where a requirement like the FDIR requirement given above appears, the En-
glish description could be accompanied by the tabular form. Again, if the two
parts are consistent, then we can be fairly confident that we have understood
the requirement. The implications for IV&V should by now be clear: redun-
dancy provides the IV&V team with an powerful means of spotting errors in
the expression of the requirements.

6.3 The SRL Testing Toolkit

The SRL Testing Toolkit will be a toolbox of useful testing tools aimed at pro-
viding mechanisms for programmers to develop code that closely meets system
specifications. The toolkit will contain tools that are continually being used
to perform testing on RMP. In addition, these tools are undergoing a trans-
formation and growth so that they can accommodate other complex pieces of
software.

The main goal of the toolkit is to provide techniques and applications to
help developers structure their tests better and to get more tangible benefits
out of the testing process. Our view of testing is that it is ultimately essential
in any and all systems. However, the ways to approach it are lined with possible
pitfalls. The toolkit will attempt to guide developers and testers down the paths
that we have discovered lead to good payback.

The toolkit is separated into three main categories. These are:

- Test Visualization and Generation tools,

- Source Code tools, and

- Test Execution and Analysis tools.

The Test Visualization and Generation tools will include tools that are di-
rected at helping testers and developers visualize and generate test cases for
their systems. The Source Code tools will be a set of tools geared towards
allowing the developer and tester place statements in the code in order to see
what state the system operates through. This technique is very simple and ex-

33

tremely useful. All developers place print statements through their code, why?
Typically, the answers are such things as: ”using the debugger is too time con-
suming”, ”the system can not be stopped, it must process without interruption”
or “the debugger is overkill for this problem”. All of these answers stem from
the fact that most debugging environments have not kept up with the advances

in software over the last 10 years. Advances such as multi-threading, continually

operation go away while debugging. Clearly something lightweight and as unob-
trusive as possible is needed. This is the domain of the humble print statement
that programmers have used for decades. The toolkit takes these statements to
the next level by providing mechanisms to capture them and analyze them in
real time.

We plan for the toolkit to support these platforms and languages:

- Windows 3.1, NT, and 95,

- BSD and SVR4 derivative UNIX systems, and

- C, C++, Tel, Tk, Python, Perl, and Java.

As a first step, the toolkit will be released incrementally. The first piece
will be the logging facility scheduled for release in January. Other pieces of the
toolkit will be released as they become generally stable and usable.

34

Chapter 7

Classification

Because exhaustive testing is impossible on large systems, analysis of all sorts
(including testing) must be prioritized. This means that analysis must classify
parts of a software development project. Both process and products must be
classified for analysis in order to perform a cost-effective analysis of a software
development effort,

The work on classification has focused on the use of formal methods to
structure, manage, and generate test cases. The formal approach allows us to
make rational decisions regarding which functions and components of the system
are critical based on a formal statement of system requirements. We have used
our work on the Reliable Multicast Protocol (RMP) as a testbed to explore
the viability, strengths and weaknesses of this approach to classification. The
following sections discuss our work related to new classification techniques on
the RMP project.

7.1 Verification and Validation of RMP

Much work has been done in the area of verifying that implementations of com-
munication protocols conform to their specifications. Conformance is usually
verified through extensive testing of an implementation in which tests are de-
rived directly from the protocol spectfication. If an implementation behaves in
a manner predicted by the protocol specification, then the implementation is
said to conform to the specification. If not, then an error exists in the imple-
mentation of the protocol. Although this method does not formally verify that
a protocol specification and an implementation are consistent, it represents the
state-of-the-practice in this domain of software development.

In the recent paper! we describe our experiences while trying to formally

1]. Callahan and T. Montgomery, An Approach to Verification and Validation of a Reliable
Multicast Protocol, in Proceedings of the ACM International Symposium on Software Testing

35

specify and implement a complex communications protocol that provides reli-
able delivery of data in multicast-capable, packet-switching telecommunications
networks. The protocol specification, called the Reliable Multicasting Protocol
(RMP), was developed concurrently with its implementation. The implemen-
tation was developed incrementally using a combination of formal and informal
techniques in an attempt to ensure the correctness of its implementation with
respect to the evolving protocol specification. We found that many formal
methods did not help us in the development of the protocol specification nor
its implementation. We concluded that the best uses for formal methods in our
situation was in the specification of the protocol requirements and the genera-
tion of tests derived from the specifications applied to prototype versions of the
software during development.

One of the primary goals of our effort was to achieve high-fidelity between
the specification and implementation during development. High-fidelity means
that the specification model and implementation agree regarding the behavior
of the protocol. We felt that if fidelity was not a primary concern, then there ex-
isted the strong possibility that the specification and the implementation would
diverge in behavior. This would render analysis of any formal specification
model irrelevant in the development and maintenance of the software since such
analysis would offer little assurance that the actual code behaved in an identical
manner.

Our development process involved two teams: a design team and a verifi-
cation and validation (V&V) team. These two teams worked in an iterative,
interactive fashion that allowed the design team to focus on nominal behaviors
of the software while the V&V. team examined off-nominal behaviors. The task
of the design team was (1) to specify the protocol in terms of mode tables and
(2) implement the protocol in C++ as specified by the mode tables. The task
of the V&V team was to (1) analyze the consistency and completeness of the
mode tables by analyzing ”paths” through the mode tables and (2) generate
tests from the mode tables for suspect conditions. Suspect conditions include
those paths identified in the mode table model as being deadlock, livelock, or
potential sources of unexpected behaviors. The V&V team used the require-
ments mode model to identify cases that were considered by the design team to
be unusual or virtually impossible. In retrospect, these cases were the source of
several errors in the specification and implementation of RMP.

We use the terms “verification and validation” in a different context from
their typical usage because of our bipartite, prototyping development process. In
our case, the term ” verification” refers to activities that help in the identification
of off-nominal behaviors of the software based on analysis of the specification
model. We use the term ”validation” to refer to activities that involve testing
the implementation for properties based on potential problems revealed through
verification analysis.

and Analysis (ISSTA), San Diego, CA, January 8-10, 1996,

36

The protocol specification as expressed in the mode tables helped us orga-
nize and structure tests while developing implementation prototypes. Testing
formed the dialogue by which the two teams communicated about the intended
behavior of the protocol and its implementation. This paper relates our ex-
periences in developing our approach and describes details of our model-based
testing methods. We do not claim to have "formally verified and validated”
the RMP specification and its implementation, but rather we have developed a
strategy and process by which the evolution of RMP is enhanced by testing and
verification. Qur approach has been to study the problems that have occurred
during development, testing, and operation of RMP. Through a post-mortem
analysis of problems, we are trying to find methods that may have discovered
problems earlier in the development lifecycle.

We do not claim that RMP has been "verified and validated” to the ex-
tent that it is totally correct, rather that we have developed a technique that
strengthens analysis and testing in the long-term development of our software.
Short term problems did occur, but they helped evolve a specification model in
high-fidelity with an implementation. Co-evolution of the formal specification
model and the implementation was the most useful result of our study. OQur tech-
nique allowed our two teams to structure their tests and other analysis activities.
Their activities supported each other in the development of the implementation
and refinement of the specifications. We will continue to use RMP as a testbed
problem and explore new specification and analysis techniques that complement
incremental software development activities. We are continuing to evolve the
specifications even though the software has been released in an Beta test ver-
sion. This type of release scheme limits the use of RMP to non-critical projects
and helps use explore operational problems. When a problem in operation does
occur, we are using the mode tables to trace where the problem occurred. This
has been useful in understanding problems, finding why problems were or were
not detected earlier, and refining the specification incrementally.

Additional information about RMP can be found at our WWW home page
at http://research.ivv.nasa.gov/

7.2 Status Update for RMP

The Reliable Multicasting Protocol (RMP) was used last month during the
International WWW Conference to multicast HTML pages around the world
on the Internet. RMP, developed by the NASA/WVU Research Project in
Fairmont, West Virginia, is used in the X-Web-Teach (XWT) tool developed by
the National Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champagne. Using RMP, the XWT tool can coordinate
the simultaneous navigation of HTML pages between thousands of users. When
one person follows a hyperlink, then all participants will also jump to the same
linked page. RMP is being formally verified and validated as a pilot project in

37

Fairmont. It is also being used within the NASA EOSDIS architecture being
developed by Hughes Applied Information Systems. Details about RMP can be
found in the VRQ Winter 94 issue. Papers on RMP, the software itself, and its
applications can be found at http://research.ivv.nasa.gov/.

There have been remarkable improvements in the Reliable Multicast Pro-
tocol (RMP) development in the last few months. In addition to the formal
verification and validation activities that are progressing well, the development
team has been able to address Security and Authentication, to provide a new
look and feel through an enhanced Application Programming Interface(API),
and to finish the first stage of a MS Windows NT and Windows95 version.

The testing techniques used and enhanced by the RMP development and
testing teams are now starting to be used in defining a generic testing toolkit
.This toolkit will be aimed at helping other developers formally test and an-
alyze other object-oriented systems. More information on this toolkit will be
forthcoming as research on developing it progresses.

The RMP development team has addressed the heated issue of security and
authentication in networking by placing hooks into RMP operation that allow
applications to define and use their own methods. The approach taken is the
same endorsed by IPv6, or IPng, where the security and authentication algo-
rithms are optional and orthogonal parts of the protocol operation. RMP does
not mandate a particular algorithm for encryption or authentication. It simply
allows the application developer to do the actual encryption/decryption and
authentication procedure itself, thus allowing great range of choice with respect
to what schemes can be employed. An RMP incremental release in late August
is the release that supports security and authentication.

With any piece of software meant to be used by a wide range of users,
especially software designed for use by other developers, changes are necessary
so that the software maintains its applicability and continues to stay usable.
After over one year of use, first at several Alpha sites and now a widespread
use, RMP has matured to the point that the old API is just not sufficient for
the needs of the users. In an effort to attack this, the development team has
taken comments from as many users as it can in order to evaluate what a new
API needs. The first draft of this API is available on the RMP Home Page
(http:/ /research.ivv.nasa.gov/projects/ RMP/MRP.html). This new API is to
be first deployed in the RMP 1.3 Beta release tentatively scheduled for the first
week of October.

Networking software is becoming very widespread on PCs equipped with the
Microsoft Windows operating system. The RMP development team has received
several requests dating back to February 1995 for an RMP version running on
MS Windows. After a little bit of thought and a lot of working with the specific
platform, I am pleased to announce that a version of RMP is now working on
MS Windows NT 3.5 and Windows95! The first release to support this will be
the RMP 1.3 Beta release.

38

o g T

g e T e = g

304 367-8348 0 FAX 304 367-8211 U 100 University Drive Q- Fairmont WV 26554
Equal Opponuniy/Aﬁimative Action Institution

